Improving Classification Performance of BCIs by Using Stationary Common Spatial Patterns and Unsupervised Bias Adaptation
نویسندگان
چکیده
Non-stationarities in EEG signals coming from electrode artefacts, muscular activity or changes of task involvement can negatively affect the classification accuracy of Brain-Computer Interface (BCI) systems. In this paper we investigate three methods to alleviate this: (1) Regularization of Common Spatial Patterns (CSP) towards stationary subspaces in order to reduce the influence of artefacts. (2) Unsupervised adaptation of the classifier bias with the goal to account for systematic shifts of the features occurring for example in the transition from calibration to feedback session or with increasing fatigue of the subject. (3) Decomposition of the CSP projection matrix into a whitening and a rotation part and adaptation of the whitening matrix in order to reduce the influence of non-task related changes. We study all three approaches on a data set of 80 subjects and show that stationary features with bias adaptation significantly outperforms the other combinations.
منابع مشابه
Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملUnsupervised Classification for Non-invasive Brain-Computer-Interfaces
Non-invasive Brain-Computer-Interfaces (BCIs) are devices that infer the intention of human subjects from signals generated by the central nervous system and recorded outside the skull, e.g., by electroencephalography (EEG). They can be used to enable basic communication for patients who are not able to communicate by normal means, e.g., due to neuro-degenerative diseases such as amyotrophic la...
متن کامل